Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurocrit Care ; 37(Suppl 1): 102-111, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35378664

RESUMO

BACKGROUND: Cortical spreading depolarizations (CSDs) are associated with worse outcomes in many forms of acute brain injury, including traumatic brain injury (TBI). Animal models could be helpful in developing new therapies or biomarkers to improve outcomes in survivors of TBI. Recently, investigators have observed CSDs in murine models of mild closed head injury (CHI). We designed the currently study to determine additional experimental conditions under which CSDs can be observed, from mild to relatively more severe TBI. METHODS: Adult male C57Bl/6J mice (8-14 weeks old) were anesthetized with isoflurane and subjected to CHI with an 81-g weight drop from 152 or 183 cm. CSDs were detected with minimally invasive visible light optical intrinsic signal imaging. Cerebral blood flow index (CBFi) was measured in the 152-cm drop height cohort using diffuse correlation spectroscopy at baseline before and 4 min after CHI. Cognitive outcomes were assessed at 152- and 183-cm drop heights for the Morris water maze hidden platform, probe, and visible platform tests. RESULTS: CSDs occurred in 43% (n = 12 of 28) of 152-cm and 58% (n = 15 of 26) of 183-cm drop height CHI mice (p = 0.28). A lower baseline preinjury CBFi was associated with development of CSDs in CHI mice (1.50 ± 0.07 × 10-7 CHI without CSD [CSD-] vs. 1.17 ± 0.04 × 10-7 CHI with CSD [CSD+], p = 0.0001). Furthermore, in CHI mice that developed CSDs, the ratio of post-CHI to pre-CHI CBFi was lower in the hemisphere ipsilateral to a CSD compared with non-CSD hemispheres (0.19 ± 0.07 less in the CSD hemisphere, p = 0.028). At a 152-cm drop height, there were no detectable differences between sham injured (n = 10), CHI CSD+ (n = 12), and CHI CSD- (n = 16) mice on Morris water maze testing at 4 weeks. At a 183-cm drop height, CHI CSD+ mice had worse performance on the hidden platform test at 1-2 weeks versus sham mice (n = 15 CHI CSD+, n = 9 sham, p = 0.045), but there was no appreciable differences compared with CHI CSD- mice (n = 11 CHI CSD-). CONCLUSIONS: The data suggest that a lower baseline cerebral blood flow prior to injury may contribute to the occurrence of a CSD. Furthermore, a CSD at the time of injury can be associated with worse cognitive outcome under the appropriate experimental conditions in a mouse CHI model of TBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Depressão Alastrante da Atividade Elétrica Cortical , Traumatismos Cranianos Fechados , Animais , Cognição , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
J Cereb Blood Flow Metab ; 39(11): 2196-2209, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30001646

RESUMO

Repetitive mild traumatic brain injury during adolescence can induce neurological dysfunction through undefined mechanisms. Interleukin-1 (IL-1) contributes to experimental adult diffuse and contusion TBI models, and IL-1 antagonists have entered clinical trials for severe TBI in adults; however, no such data exist for adolescent TBI. We developed an adolescent mouse repetitive closed head injury (rCHI) model to test the role of IL-1 family members in post-injury neurological outcome. Compared to one CHI, three daily injuries (3HD) produced acute and chronic learning deficits and emergence of hyperactivity, without detectable gliosis, neurodegeneration, brain atrophy, and white matter loss at one year. Mature IL-1ß and IL-18 were induced in brain endothelium in 3HD but not 1HD, three hit weekly, or sham animals. IL-1ß processing was induced cell-autonomously in three-dimensional human endothelial cell cultures subjected to in vitro concussive trauma. Mice deficient in IL-1 receptor-1 or caspase-1 had improved post-injury Morris water maze performance. Repetitive mild CHI in adolescent mice may induce behavioral deficits in the absence of significant histopathology. The endothelium is a potential source of IL-1ß and IL-18 in rCHI, and IL-1 family members may be therapeutic targets to reduce or prevent neurological dysfunction after repetitive mild TBI in adolescents.


Assuntos
Concussão Encefálica/patologia , Inflamação/patologia , Animais , Concussão Encefálica/fisiopatologia , Técnicas de Cultura de Células , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Humanos , Hipercinese , Inflamação/etiologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Aprendizagem em Labirinto , Camundongos , Doenças Vasculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...